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VECTOR RADIX FAST FOURI ER TRAN SFORM

David B. Harris , James H. McClellan
David S. K. Chan and Hans W. Schuessler

Massachusetts Institute of Technology
Research Laboratory of Electronics

Cambridge , Mass. 02139

radices. Further , we show that even largerABSTRACT -savings in multiplies are obtained when the algo-
rithm is generalized to operate with largerP. new radix-2 two-dimensional direct FFT
radices and on higher dimensional arrays. Wedeveloped by Rivard is generalized in this paper
refer to the general algorithm as the vectorto include arbitrary radices and non-square arrays.
radix algorithm , since to specify the decimationIt is shown that the radix—4 version of this algo—
of the array , multiple radices are required , onerithm may require significantly fewer computations
for each index of the array.than conventional row-column transform methods.

Also , the new algorithm eliminates the matrix
An additional , machine dependent, impl icationtranspose operation normally required when the

of the new algorithm is explored here as well.array must reside on a bulk storage device. It
When the DFT computation is implemented on arequires the same n umber of passes over the array

on bulk storage as e f f ic ien t  matrix transpose computer with an insuff ic ient  amount of core

rou tines , but produces the transform in bit— memory to contain the entire array, a matrix

reversed order. An additional pass over the data transpose operation is a necessary component of
the row—column approach . This fact has occasionedis necessary to sort the array if normal ordering
a literature on fast transpose techniques , led byis desired .
Eklundh [3). However , the vector radix algorithm
requires no transpose. The transpose is, in
e f f e ct, incorporated into the transform. A vector
radix transform requires t)~e same number of passes
over the array on secondary storage (e.g. disk)
as the Eklundh transpose algorithm , when the
resulting OFT can be tolerated in bit reversed
order. If the OFT must be in correct order , an
additional transfer of the array is requ ired to

INTRODUCTION perform bit reversed sorting. On a machine which
is I/o intensive , this extra pass over the array

Since the appearance of the original Cooley- may compromise the comput~ tional advantages of
Tukey algorithm in 1965, the standard methods of the new algorithm .
computing the two—dimensional (2—0) discrete
Fourier transform (OFT) of an array have capital- DERIVATION
ized on the separability of the 2-0 DFT (1). Using
a 1-0 FFT algorithm , row-wise and columnwise , l—D As with the one-dimensional FFT algorithm,
DI’T ’s can be computed to yield the 2—D transform , the new direct two—dimensional FFT is derived by
This scheme amounts to decimating and transforming decomposing the OFT into sums of smaller OFT’s
the array first in one index and then in the other , multiplied by ‘twiddle ’ factors. We derive here

a single stage of the general vector radix algo—
A new algorithm which performs the decimation rithm for the decimation in time case. This is

in both indices simultaneously has been derived by all that is necessary, since the complete algo—
Rivard using a holor algebra formaL i sm 121 . Riv~~d rithm is obtained by recursive application of this
demont;trat -d that his radix—2 direct 2—D FFT elim— basic decomposition.
m ates 25% of the multiplies required by the con-
ventional row-column approach. We suppose the 2—0 OFT

M-l N-l km i~nThe purpose of this paper is to present an
X (k, i) - ~ x(m ,nJ W

M 
W
Nalternate derivation of the new algorithm and to

m=0 n—0‘-x t . ’rid it to roctangular arrays and arbitrary

_______________ 
k= O M-l £~ O N-i U)
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Provided radix r
1 
divides M and radix r

2 
divides N: 

-

~~~~

X~~ (a+bP~ c+dQ) X~~~(a,c) . (10)
M/r

1 
— P N/r

2 
= Q integers (2)

the DFT may be computed with an r
1
xr

2 
stage. Using Using substitutions (9) and 10) in equation (8)

the change of variables : produces:
r
1
—l r

2—l

In = r~p+u n r
2
q+v X(a+bP , c+dQ) ~ ~ wb~ w

d
~

u=0 v=O r
1 

r
2

p = 0 ,... ,P—1 q O  Q—l (3)
cv uv

u — 0,...,r
1
—l v=0 r

2
—l ~~~~ 

W
N 
) X~Q

(a~c)l . (11)

Equation (11) defines the basic structure of the

the DFT (1) is decomposed into r
1
r
2 
PxQ DFT’s. 

r
1
xr

2 
butterfly. A few observations will clarify

Performing the substitution of variables of (3) this. First, there is one butterf l y  for each
in equation (1), we obtain : combination of values of a and c, giving a total

of PQ butterflies. Thus, a and c are the butter—
P—l 

r
1
1 
Q—l 

r
2
—l 

fly indices. Each butterfly computes r
1
r
2 

values
X(k,~~) ~ ~ x (r

1
p+u,r

2
q+v] of X ( , ’) (indexed by b and d) from r

1
r
2 

values
• p=0 u=0 q=O v=O

of the smaller PxQ element DFT’s (indexed by u and
k(r p+u) 9.(r

2
q+v) v). As input to the butterfly, one el ement is

w • w (4) taken from each PxQ point transform . These ale—M N men ts are not used by any other butter f l i es  in
From equation (2): the stage , so that the r

1
r
2 

output values of

k(r
W
M 

l~~
’
~ = ~~ p 

~
Jcu t(r q+v) 

— 

the butterfly may be stored in the memory loca-

N ~~~ 
tions occupied by the input elements. Therefore ,
as with the l-D FFT algorithm , the vector radix
transform may be computed in place .

Substituting the relations of (5) into equation(4),
we obtain the desired result:

The inputs to the butterfly are premultiplied
r
1
—l r

2—l by the twiddle factors (in parentheses) , then an

X(k ,~~) = ~ W°~ W~~
’ X~~ (k ,9.) (6) 

r
1

xr
2 

2—0 OFT of the resulting array (in square

u 0  v=0 brackets) is computed. The fact that the butter-
fly can be interpreted as a 2-0 DFT calculation

where suggests several structures for performing the

X~~~(k , l) = 
P~ l Q~ l 

x (r
1
p+u,r

2
q+vl WkP ~tq . computation. The conventional row-column FFT

structure can be employed or the vector rad ix
p—0 q=O

approach can be used. The latter is generally
more e f f i c i e nt.

is the 2-D OFT of a PxQ element array.

One very important observation is that the
We introduce a second change of variables to

au cv
bsplit the computation of XOc ,t) into r

1
xr

2 
element product of the twiddle factors W

M 
and W

Nbutterfly groupings :
precomputed and stored in a table. The computa-
tional advantage enjoyed by the vector radix al—k — a +bP ~ — c +dQ
gorithm arises from the fact that such products
are not computed , whereas they are computed impl i-a — 0,... ,P—l c 0,... ,Q—l (7)
citly in the row—column approach.

b — 0 r
1
—l d 0 r

2
-1 

As an example we consider the radix 2x.~ case,

where M=N=2
V
, v an integer , and r

1
=r

2
=2. Equatio-i

Performing the change of variables (7) on equation (11) reduces to:
(6) yields :

r
1
-l r
:
_l 

(a+b P ) u  
~~~~~~~~~~~~~~~ 

X ( a +b , c+d 
N 

= ~ (1)
bu+dv

X (a+bP, c+dQ) ~ W u=O v=0
u 0 v O

uv [(W~~
”
~~ ) X~ ~ (a,c)) (12)• XpQ 

(a+bP , ~+~t ç) - (8) N

• Again: a,c=O N/2-l b ,d=0 ,1

— w5 1 1  +d Q) v  wc
~

twd
~
/ One possible butterfly structure for the

N M r
1 

N N r
2 

computation of equation (12) is shown in Figure 1.
This structure has a minimum number of adds and
multiplies , and is the same as an efficient radixThe PxQ ~~in t OFT’s are periodic:

• A ~~~~~~ -- ~~~~~~~~~~~. ~~~~~~~~~ ~~~
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four one—dimensional butterfly structure with the some flexibility in trading CPU speed against I/O

• internal multiplies by j removed, transfer rate . In an attempt to quantify this

1 tradeoff , statistics for the two algorithms are
00 + + presented in a table at the end of this section.
F
~ N

(a
~

c) .- 
~~~~ , F~~~(a .c) The total number of complex multiplies and butter-

c 
\~~7 

+ \ / + flies required for NxN transforms are tabulated
W
N for both algorithms and various radices, The

01 + N number of butterflies is included as a partial
FN N

(a
~~
) a 

— 
F
~N

(a .C + ~) measure 0± the amount of “overhead” that the

a 
+ algorithms might be expected to have..

10 

W
N 

+ N In counting the number of multiplies
F
N
.
N

(a .c) 
- 

F
NN

(a + ~-,c) we adopt the philosophy that all butterflies are
+ treated identically. This implies that all

twiddle factor multiplies are counted for the
11 N + + N N second and subsequent stages. Twiddle factors
FN N

(a ,c) - - FNN
(a + ~ ,c + ~) are unity in the f i rst stage , so these multiplies

are not counted. Multiplies by ±1 and ±j inter~(al
Figure 1: Radix 2x2 Butterfly to the but ter f l ies  are not counted.

As a f igure of relative computational a

speed , the ratio of the total number of multiplies

0 0 r~quired by each algorithm to the total number ofx [0,01 ~~~~~~~~ ,r
.-..~ ,—X [O ,O3 multiplies required by the radix 2 row-column

xIO ,2) 
0 0 

x[o ,ll algorithm (for N=4096) is also tabulated.

x (0,lJ 
0 0 X [0 ,21 The left—hand side of the table contains

x [0, 3) 0 1 
x(o,3J information on the number of times that the entire

array must be transfered from bulk memory to core
memory and back . This information is presented as

x12 ,01 
0 0 X [l ,0) a function of the number of rows of the array (2,

O 0 4,8,16) that can be stored in core memory. It is
x ( 2 ,2) X [l ,l )  assumed that the Eklundh transpose algorithm is

x [2 ,lJ 
0 ~ X [l ,2] used in the row—column approach. This requires

• 0 1 log N/log R transfers, where R is the available
x (2 ,3)  X(1 ,3~ 

2 2
n umber of rows of core storage and we assume that
N is a power of R. No extra transfers are neces-

x [l,0) 
0 X [2 ,0J sary to compute the row and column FET’s, since

o o these may be computed during the first and last
x [ l, 21 X [2,ll stages of the Eklundh algorithm . The vector radix

x ( l , 1I 
0 0 

x[2,2) algori thm requires loq
2

N/log
2

R +1 passes over the

x [l,3J 
0 

x(2,31 array, since ( in  the radix 2x2 case ) log
2

R stages

of the FFT may be computed per array transfer.

O 1 
• The extra pass over the array in the vector radix

v (3,0J X [3,0) algorithm is necessitated by the 2—D bit—reversed

x (3,21 
0 1 x(3,ll sorting of the data .

x [3,lJ X (3,2 )  It is readily apparen t that the vector
x ( 3 , 3J 

2 
x13 ,3] radix rxr algorithm has fewer multiplies and but-

terflies than the row—column radix r algorithm.
In the case where r=2 , there is a 25% reduction

Figure 2: 4x4 OFT with radix 2x2 algorithm, in number of multiplies an d fewer , albeit more
Solid circles indicate 2x2 butterflies and complicated , butterflies with the 2x2 algorithm.
twiddle factor multiplies by Wk are indicated Experiments with FORTRAN codings of the two algo—

by the exponents k. 4 rithm s have shown that a 25% reduction in computa-
tion time is achieved in practice for N=64.

In Figure 2 we display the radix 2x2 structure On the basis of relative number of multi-
for computation of a 4x4 (v=2) element DFT. Rows plies and butterflies , we conclude that the radix

• of the bit-reversed array are concatenated and 4 row—column algorithm has about the same coinputa-
arranged vertically on the left hand side of the tional complexity as the vector radix 2x2 algori-
figurt- . As is generally true for the 2x2 algorithm , thin . The fact that the radix 4 1-0 algorithm re—

• only 2 rows of the array are accessed simultaneous— quires one less array transfer argues strongly in
ly ,  so that 2 rows worth of core storage are suf— its favor . Its disadvantages are less flexibility
ficient to implement the algorithm , in transform size (N must be a power of 4 as

• COMPARISON AND DISCUSSION 
opposed to a power of 2) and the fact that it
produces the transpose of the OFT instead of the

Introduction of the vector radix FFT provides normally—ordered OFT. This last , rather minor ,

550
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problem is characteristic of all radices in the
row-column approach. 2d 

- 1

The larger radix algorithms are even more d • 2
d—l

attractive as far  as the relative numbers of
• multiplies and butterfl ies are concerned. The for d—dimensional t ransforms,  For large values

radix 4x4 and 8x8 algorithms appear to be compu- of d , this rat iu asymptotically approaches 2/d.
tationally advantageous even when compared with
the 1-0 radix 4, 8 and 16 algorithms. However ,
the coding complexity will increase dramatically REFERENCES
with increases in the radix size for the vector
radix approach. The rather marginal decrease in U-~ Cooley , J. W., and J . W . Tukey, “An Algorithm

multiplies in the radix 8x8 case as compared to for the Machine Calculation of Complex
the radix 4x4 case probably does not j u s t i fy  the Fourier Series,” Math, of Comput., vol. 19,
extra coding effort. With these facts in mind , pp. 297—301 , April 1965.
we speculate that  the radix 4x4 algorithm will be
the algorithm of choice for most applications 1 2] Rivard , G. E., ”Al gorithm for Direct Fast

involving machines limited by computational speed Fourier Transform of Bivariant Functions , ”

or machines with suf f ic ien t  core storage to hold paper presented at the 1975 Annual Meeting

the entire array , of the Optical Society of America , Boston ,
Massachusetts, October 1975.

In situations where the OFT is implemented on
an I/O intensive machine and must not be in [3] Eklundh , J. 0.,  “A Fast Computer Method for

scrambled order , the row—co lumn approach may be Matrix Transposing, IEEE Trans.  on Compu-
ters , vol. C—21 , pp. 801—803 , July 1972 .preferable. The row-column algorithm of any radix —

requires one fewer t ransfer  than the vector radix
2x2 algorithm. When the amount of core storage
is suff ic ient  for a number of rows which is not a
power of 4 , the row—column algorithms require
substantially fewer transfers than the vector

• radix 4x4 algorithm. In such cases , the row-
column approach makes better use of increased core ACC ESSION for
memory size, . NT I S White Section

Transforms of non-square arrays can be accomo- 
a.~ Section 0

dated in the vector radix approach by means of UNAN~0’J~~~ 
0

mixed radix algorithms. For example , N x2N trans- JUSIIIICM%O)f
forms may be computed with one stage of radix 2x4
but terf l ies, followed by log N-l stages of radix .“ —

2x2 but ter f1ies .
y~~t~~111

In conclusion , we note that the vector radix _— - -
~~~~~~~~~ ~‘ C1P.%.

algorithm can be generalized to higher dimensional • -

transforms. In three dimensions , decimation in all
three indices of the array simultaneously leads to
a radix 2x2x2 algorithm. This algorithm requires
7/ 12 the numbe r of mul t ip l ies  that a conventional
algorithm using l-D FFT ’ s requires. This ratio
impr3ve s with higher dimensionali ty  and is equal to

TABLE OF OPERATION COUNTS (N =2 ’1)

Disk Accesses Multiplies per Number of Total Number
FFT TYPE Radix 2 4 8 16 Butterfly* Butterflies of Multiplies Ratio

VR 2x2 v+l v/2+l  /3+1 v/4+l 3+0 1/4 N 2V 3/ 4 N 2 (V— l)  ,75

VP 4x4 — v/2+l \)/2+l \)/4+l 15+0 1/32 N 2V 15/32 N 2 ( V — 2 )  .426

VP 8x8 — — u/3+l v/3+l 63+24 1/192 N
2
V 29/64 N

2
(v-63/29) .405

RC 2 V v/2 v/3 v/4 1+0 N 2 V N 2 (v- l)  1.00
PC 4 v v/2 v/3 v/4 3+0 1/4 N2v 3/4 N2(U— 2) .682

RC 8 V v/2 ‘i/3 v/4 7+2 1/12 N 2
V 3/4 N

2 (V— 7/3 )  .659
PC 16 v V/2 \)/3 V/4 15+9 1/32 N

2 U 3/4 N
2 ( V — 5/2) .648

*Twjd d le factor  m u l t i p l i e s  ( f i r s t )  and i n t e rna l  b u t t e r f l y  m u l t i p l i e s  (second) are tabula ted  e c par a t ely .
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